Towards Next Generation 3D Cameras

Mohit Gupta

Assistant Professor Computer Science University of Wisconsin-Madison

Support: NSF, ONR, DARPA

3D Cameras: History

photo-sculpture [Francois Willeme, 1860]

image courtesy: http://p2.la-img.com/427/15943/5255594_5_l.jpg

3D Cameras: Present

High resolution 3D [Levoy *et. al.* 2009] 3D capture of dynamic scenes [Zhang *et. al.* 2003]

3D Imaging: Structured Light Triangulation

3D Imaging: Time-of-Flight

← speed of light depth=c/2τ

[Koechner, 1968]

Modern 3D Cameras

Microsoft Kinect 5 million sold in last 6 months

SoftKinectic Consumer devices

Potential to Revolutionize Diverse Application Domains

http://news.xbox.com/2014/04/xbox-one-march-npd http://www.engadget.com/2013/06/04/intel-announces-creative-depth-vision-camera-at-computex-2013/

3D Revolution

image courtesy: www.magicleap.com/, http://www.upi.com/

3D Imaging: Challenges

ambient illumination

3D Imaging In Sunlight

missing / incorrect depths

3D image

3D Imaging: Challenges

ambient illumination scattering

Effect of Scattering in Autonomous Driving

KAIST EureCar: Self Driving Car [Hyundai Autonomous Vehicles Competition]

videos from: https://www.youtube.com/watch?v=D7WtSB55q4s, https://www.youtube.com/watch?v=xs9Gr9V2mOE

Effect of Scattering in Autonomous Driving

KAIST EureCar: Self Driving Car [Hyundai Autonomous Vehicles Competition]

videos from: https://www.youtube.com/watch?v=D7WtSB55q4s, https://www.youtube.com/watch?v=xs9Gr9V2mOE

3D Imaging: Challenges

environmental factors

ambient illumination scattering

3D Imaging: Challenges

environmental factors

ambient illumination scattering

scene-dependent factors

geometry

material properties

Evolution of 3D Cameras

3D Cameras Of The Future

3D Cameras That Work Reliably In-The-Wild

In Every Environment

3D Imaging In Sunlight

 $I\downarrow 1 = I\downarrow source + I\downarrow sun$

I↓2 =*I*↓*sun*

 $I \downarrow diff = I \downarrow 1 - I \downarrow 2 = I \downarrow source$

3D Imaging In Sunlight

Problem: Random Arrival Of Photons

naerinaplootigh flisxa (piercuentie triannel) and photoesss

Problem: Photon Noise

std ($\sigma \downarrow photon$) = $\sqrt{I} \downarrow true$

photon noise follows Poisson distribution

Source Light Versus Sunlight

Source Light Versus Sunlight

2-5 orders of magnitude weaker as compared to sunlight

Camera Design for Outdoor 3D Imaging

Camera Adapts to the Environment

increasing light spread

environment adaptive light distribution

Achieving Different Light Spreads

vary the rotation speed of the mirror

Achieving Different Light Spreads

slow rotation

fast rotation

Experimental Results

Clay Pot Placed Outdoors

11:00 AM. Ambient light = 75,000 lux.

Shape Comparison

frame averaging adaptive approach [Gupta *et. al.,* ICCV'13]

(same acquisition time for both methods)

Scanning Columbia Campus

12:00 PM. Ambient light = 90,000 lux.

Scanning Columbia Campus

13:00 PM. Ambient light = 94,000 lux.

3D Cameras Of The Future

3D Cameras That Work Reliably In-The-Wild

In Every Environment

For Every Scene

3D Imaging Of Indoor Scenes

Errors in Shape Recovery

Continuous Wave ToF Imaging

Continuous Wave ToF Imaging

Interreflections and ToF Imaging

Interreflections and ToF Imaging

Interreflections Result In Incorrect Phase And Hence, Incorrect Depths

Interreflections: Existing Work

2-3 Indirect Paths

[Godbaz et al. 2008, Jimenez et al. 2012, Dorrington et al. 2011] [Godbaz et al. 2012, Kadambi et al. 2019, Kirenati et al. 2014]

Intuition for Solution

If Interreflection Component Is Constant Phase is Not Affected

Interreflections vs. Modulation Frequency

Increasing Modulation Frequency Decreasing Resultant Amplitude angular spread of phases Local Smoothness of Light Transport [Nayar et al. 2006]

Interreflections vs. Modulation Frequency

For High Temporal Frequency InterreflectionsDopNoerAffect@hatsent

Phase Ambiguity

 $\varphi(A) = \varphi(B)$

Different Scene Depths Have Same Phase

Disambiguating Phase

Compute Phases at Multiple High Frequencies

Micro Time-of-Flight Imaging

Modulation Signals With Micro (Small) Periods

Conventional vs. Micro ToF Imaging

Simulations: 3D Imaging Of Indoor Scenes

Room: Shape Comparison

Shower Curtain

image

Shape Comparison

large errors and holes

Conventional Phase Shifting

Micro Phase Shifting

Experimental Setup

Maximum System Modulation Frequency = 125 MHz.

Scattering and ToF Imaging

Driving through fog

Driving in a dust storm

Images from: drivinglessonsedinburgh.blogspot.com, ngm.nationalgeographic.com

Sphere: Shape Comparison

Micro Deptersievasleietstienereed Shape

3D Cameras Of The Future

3D Cameras That Work Reliably In-The-Wild

In Every Environment

For Every Scene

ambient illumination

scattering

material properties

Challenge of Specular Materials

Challenge of Specular Materials

specular surface

metal (silver)

3D Imaging Of Optically Challenging Objects

Diffuse Structured Light

Coin

Image

Comparison

Conventional Structured Light

Diffuse Structured Light [Nayar and Gupta, ICCP'12]

Reconstructions with Our Method

Practical Impact

robotic assembly of machine parts

inspection of printed circuit boards