Machine vision for various manipulation tasks

Yukiyasu Domae

Advanced Technology R&D Center, Mitsubishi Electric Corp.

AIST

Machine Vision problems and algorithms in Factory Automation

Trend on Factory Automation

Megatrend : Increase of aging population, labor shortage

From mass production to variable production

Cell production robot system

From parts supply to all assembly for products

Difficult task: parts supply

Developed technology

Fast picking from cluttered scenes

- R&D100 award 2014 winner -

Basic recognition theory for picking

Object model

Examples of parts pose estimation

Applicable objects of pose estimation

What's the problem for manipulation?

Practical approach for various object manipulation

Basic theory of pose estimation

Object model

Basic thery of picking recognition

Y.Domae, H.Okuda, et.al. "Fast Graspability Evaluation on a Single Depth Maps for Bin-picking with General Grippers", ICRA2014

Fast graspability evaluation

Vacuum

Y.Domae, H.Okuda, et.al. "Fast Graspability Evaluation on a Single Depth Maps for Bin-picking with General Grippers", ICRA2014

Recognition examples

We compute the graspability map by filtering a depth map with the masks

2-finger

Recognition examples

We compute the graspability map by filtering a depth map with the masks

Vacuum

Demo

Y.Domae, H.Okuda, et.al. "Fast Graspability Evaluation on a Single Depth Maps for Bin-picking with General Grippers", ICRA2014

Regrasp method

Regrasp motion planning

Stable poses on a planer table

Regrasp motion planning

http://gamma.cs.unc.edu/MPIR/

Graspable gripper poses

Regrasp motion planning

Planning examples

Example of mid-level planning for manipulation

A Mid-level Planning System for Object Reorientation

Weiwei Wan¹, Hisashi Igawa², Kensuke Harada¹³, Zepei Wu¹, Kazuyuki Nagata¹, Hiromu Onda¹, Yamanobe Natsuki¹, and Yasuyo Kita¹

> ¹The Manipulation Research Group, National Inst. of AIST ²Hokkaido Research Organization ³Osaka University

A mid-level planning system for object reorientation https://www.youtube.com/watch?v=X8Ltgs7ppsk

General parts feeding system

Demo

Applicable objects(ALL)

Comparisons

	Our method	Parts feeders	Traditional robot system	Manual labor
Arbitrary part shapes	ОК	NG	NG	ОК
Cycle time	3∼5 seconds	$1\sim2.5$ seconds	$3.5 \sim 10$ seconds	1~3 seconds
Lead time for product change	2~3 days for robot programming	1 month for H/W renewal	2 weeks for S/W renewal	1 hour for starting 2 weeks for mastership

2. Machine vision problems in Warehouse Automation

Inside look at an Amazon warehouse

BGR: An inside look at an Amazon warehouse

http://bgr.com/2012/11/30/amazon-warehouse-an-inside-look/

Warehouse working processing

出典:BGR: An inside look at an Amazon warehouse http://bgr.com/2012/11/30/amazon-warehouse-an-inside-look/

Trend on warehouse automation

- From mass logistics to variable logistics -High flexibility is also needed to warehouse.

Daifuku: Shuttle track

http://www.daifuku-logisticssolutions.com/image.jsp?id=2234

Roogato: Amazon using robot automation: Says human employees still needed

http://roogato.com/amazon-using-robot-automation-says-human-employees-still-needed/

Autonomous mobile for flexibility

Tablet monkeys : Amazon Warehouse Robotshttps://www.youtube.com/watch?v=quWFjS3Ci7A

Probrem : Picking various items

Picking is by hand in warehouses

Amazon Picking Challenge http://amazonpickingchallenge.org/

CG demo of mobile manipulator

I AM ROBOTICS: Swift – Mobile Picking Robot https://www.iamrobotics.com/

Problem as pattern recognition

Amazon Picking Challenge 2016 例題

1. Item classification \rightarrow Specific object recognition 2. Picking \rightarrow pose estimation, grasp planning

Problem as pattern recognition

- 1. various types of items
 - Measurement of translucent, transparent, shiny, brack items

- Recognition of flexible items

- 2. Cluttered scene
 - Overlap, hidden

Amazon Picking Challenge (APC)

Amazon Picking Challenge 2015

Target items in APC 2015

Team C^2M (Chubu, Chukyo, Mitsubishi)

Recognition approach of Team C^2M

Recognition approach of Team RBO(2015 winner)

- Feature extraction from RGBD images
- Item classification for each pixels by using Bayes rule
- Pixel labeling and item segmentation

Recognition trends in APC 2015

Team	Sensor	Perception	Motion Planing
RBO	3D imaging on Arm, Laser on Base, Pres- sure sensor, Force- torque sensor	Multiple features (color, edge, height) for detection and filtering 3D bounding box for grasp selection	No
MIT	Both 2D and 3D imaging on Head and Arm	3D RGB-D object match- ing	No
Grizzly	2D imaging at End- effector, 3D imaging for head, and laser for base	3D bounding box seg- mentation and 2D feature based localization	Custom motion planning algorithm
NUS Smart Hand	3D imaging on Robot	Foreground subtraction and color histogram classification	Predefined path to reach and online cartesian plan- ning inside the bin using Movelt.
Z.U.N.	(respondent skipped response)	(respondent skipped re- sponse)	MoveIt RRT Planning for reaching motion and use pre-defined motion inside bin
C ² M	3D imaging on End- effector and force sensor on arm	RGB-D to classify object and graspability	No
Rutgers U. Pracsys	3D imaging on Arm	3D object pose estimation	Pre computed PRM paths using PRACSYS software & grasps using GraspIt
Team K	3D imaging on Arm and Torso	Color and BoF for object verification	No
Team Nanyang	3D imaging on End- effector	Histogram to identify ob- ject and 2D features to de- termine pose	No
Team A.R.	3D imaging on End- effector	Filtering 3D bounding box and matching to a database	No
Georgia Tech	3D imaging on Head and Torso	Histogram data to to rec- ognize and 3D perception to determine pose	Pre-defined grasp using custom software and OpenRave
Team Duke	3D imaging on End- effector	3D model to background subtraction and use color / histogram data.	Klamp't planner to reach- ing motion
KTH/CVAP	3D/2D imaging on head, Tilting laser on Torso and Laser on Base	Matched 3D perception to a stored model	Move to 6 pre-defined working pose and use Movelt to approach and grasp object

1. Senor

- Cheap and low resolution sensor
- 2D and 3D imaging
- Laser scanner
- 2. Classification
 - RGBD-feature-based (color, edge, etc)
 - Pose estimation
 (bounding box, graspability)

 \rightarrow No deep learning

Lessons from the Amazon Picking Challenge

http://www.mathpubs.com/detail/1601.05484v2/Lessons-from-the-Amazon-Picking-Challenge

Picking demo of APC 2015

Picking Robot: Mitsubishi Electric Corp. https://www.youtube.com/watch?v=AEKEce_ZKgg

Amazon Picking Challenge 2016

- 1. Additional items 25 items \rightarrow 38 items
- 2. Additional task : Stow

Recognition trends in APC 2016

Recognition approach of team C²M in APC 2016.

Almost all teams used Deep Learning for item recognition!

Demo by Team Delft (2016 winner)

Amazon Picking Challenge 2016 - Team Delft picking https://www.youtube.com/watch?v=3KlzVWxomqs

Recognition strategy by Team C^2M in APC 2016

Fast Graspability Evaluation

Crop patches from RGB image

- 1. Patches are cropped by using Fast Graspability Evaluation
- 2. Convolutional Neural Network

Input: RGB patches

Output: Item ID (and Gripper pose)

Training image examples

Data augmentation : In-plain rotation and Intensity

Training image examples

Data augmentation : In-plain rotation and Intensity

CNN Structure

Convolutio nal layer	Input feature maps	Output feature maps	Filter size	Batch Normalization	Pooling	Activation function
1	3	96	11 × 11	Y	Max pooling	ReLU
2	96	128	5 × 5	Y	Max pooling	ReLU
3	128	128	3 × 3	Ν	N	ReLU
4	128	128	3 × 3	Ν	N	ReLU
5	128	128	3 × 3	Ν	Max pooling	ReLU

Fully connect ed layer	Input units	Output units	Activation function	Dropout (Learning)
1	4608	2048	ReLU	γ
2	2048	2048	ReLU	γ
3	2048	40	Soft max	Ν

Constrained softmax function

If items are constrained and thus doesn't exist in the bin, we didin't compute corresponded softmax functions.

Recognition results

Recognition rate : 5/6

Recognition rate : 4/5

Recognition results

Recognition results

Recognition rate : 5/5

Recognition rate : 6/6

Recognition successful rate

was **80.2%** by inputting **3485 patches** being extracted from **400 images.**

Key-point matching

- Key-point detector : Cascaded FAST [T. Hasegawa, ICIP 2014]
- Local features : ORB features [E. Rublee, ICCV 2011]

Key-point matching results

Combination of Key-point matching and CNN

Classification results by CNN

Classification results by Key-point matching

Classification error estimation and rejection for each segment which are extracted from depth image

Synthesized result

- Matching Score
- Distance from CoG
- One item ID for each segment

Recognition result by using combination method

Recognition successful rate becomes **92.5%**.

What's the next? : Amazon Robotics Challenge 2017

- 1. "Unknown" items
 - Half of items are supplied "just before" the challenge
 - Hard to use Deep Learning (because of learning time)
 - Category classification(general object recognition) becomes important
- 2. Additional task : Stow and pick
 - Robot must stow items in order to pick

Other approach: End-to-End learning

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection http://arxiv.org/abs/1603.02199

Grasp predictor by CNN

Input : RGB images and Movement vector of robot picking approach Output : Grasp success probability

When we acquire an RGB image, we can estimate picking success probability for each picking approach.

- No requirement of hand-eye calibration
- Need many trials for learning

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection http://arxiv.org/abs/1603.02199

Conclusions

- 1. Factory and Warehouse
 - Various parts are supplied by hand
 - Stowing and Picking is by hand
 - Picking and item classification is important
- 2. algorithms
 - voting-based pose estimation: point pair features
 - gripper-pose-based : fast graspability evaluation
 - Regrasping : graph searching
 - Item classification : Deep learning,

Appearance-based method

- 3. What's the Next?
 - End-to-End learning
 - Combination of general/specific object resognition

Thank you !

Self-introuction

Yukiyasu Domae, Ph.D.

Principal researcher

Advanced R&D center, Mitsubishi Electric Corporation

Research Interests: Machine vision, robot vision, manipulation

Awards:

R&D100 award(2014), IPSJ Kiyasu special industrial achievement award(2014), Best paper awards of JRM(2012) and RSJ(2016), Japanese robot award(2012), Good Design Best100(2016) and so on, with the contribution of machine vision research and development.

